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Abstract: Time-frequency analysis is used to reveal the valuable information hidden in the EEG data. The high 

resolution of the time-frequency representation is the one of the important thing to depict geological structures. 

In this project, we propose a EEG time-frequency analysis approach using the newly developed empirical 

wavelet transform (EWT). It is the first time that EWT is used for analysing multichannel EEG data for the 

purpose of ECG exploration. EWT is similar to the empirical mode decomposition; it is a thoroughly adaptive 

signal-analysis approach, which purely contains consolidated mathematical background. . EWT first estimates 

the frequency components presented in the EEG signal, then computes the boundaries, and extracts oscillatory 

components based on the boundaries computed. The real EEG datas are synthetic, 2-D, and 3-D.Which helps to 

demonstrate the effectiveness of the EEG time-frequency analysis approach. Results show that the EWT can 

provide a much higher resolution than the traditional continuous wavelet transform and offers the potential in 

precisely highlighting geological and stratigraphic information. Finally comparative results of the EWT and 

CWT  were shown in MATLAB. 

Keywords: Continuous wavelet transform (CWT), empirical wavelet transform (EWT), instantaneous 

frequency, sparse representation, time–frequency analysis. 

 

I. Introduction 
Most of us directly experience such technologies daily: browsing the Internet, transforming/receiving 

emails, viewing television, or carrying out a phone conversation. Many of these experiences occur on mobile 

devices that we carry around with us, so that we are always connected to the cyber world of modern 

communication systems. In fact, there is a wide amount of communication take place from one machine to 

another machine that we cannot directly experience, but which are indispensable for the operation of modern 

society. Examples include- Internet: signaling between routers   Computing devices: signaling between 

processors and memories.  

We use the term message signals for such signals, since the term message is used to convey the 

information from one person to another through communication system. In natural condition both during 

generation and consumption the message signals are in analog form: these messages signal are continuous time 

signals in this value also occurring in a continuous manner. Geophysical properties of the local time-frequency 

variations are described by a TIME-frequency decomposition maps. In these TFD maps a 1-D signal in the time 

domain into a 2-D image in time-frequency space take place to describe the geophysical properties. In seismic 

data processing and interpretation the time-frequency analysis are used wider in range. The most commonly 

used approach is the short time Fourier transform (STFT) [1]. However, the predefined window length provides 

a fixed spectral resolution [2].  

A wavelet-based method is the alternate method used for seismic time-frequency analysis. This 

wavelet-based method helps to overcome the limitations of STFT. [3]. and it shows superior spectral 

resolutions. Stockwell et al. [4] suggested the S transform, is a combination of both STFT and the wavelet 

transform (WT) [5], [6]. It not only discriminates as the multiresolution analysis of the WT, Meanwhile it also 

eradicates the further requirement of the standard window length for the STFT [7]. 

The Wigner-Ville distribution [8], [9] has a higher time-frequency resolution, but its application is 

restricted by the existence of cross-product terms or interference. Matching pursuit-It is one of the Time-

Frequency Analysis methods. Due to the redundancy of the atom library at the expense of computation this 

occurs even though the time-frequency resolution is higher in range. Han and van der Baan [13] investigated 

about the chance of using empirical mode decomposition (EMD) and its expansion, the ensemble [EMD] + 

complete ensemble [EMD], in combination with instantaneous frequency. In spite of its considerable success, 

there is still a lack of mathematical foundation and low computational efficiency. 

The authors of [14]-[17] applied the synchrosqueezed wavelet transform [18] to seismic time-frequency 

analysis and it gives significant higher resolution than the WT. To boost the spectral resolution [18] a 
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redistribution method of the time-frequency plane information and a  classic wavelet analysis are merged using 

the synchrosqueezed wavelet transform [19]. With a newly recommended transform called empirical wavelet 

transform (EWT) are used to expand our future studies of seismic time-frequency analysis [19].The EWT is a 

rapid and entirely adjusting wavelet technique. The scaling function and wavelets accept themselves according 

to the message contained in the evaluated signal, and no former message regarding the signal is required. 

Similar to EMD, EWT is a entirely modifying signal analysis approach that can be conveniently used. However, 

Empirical Wavelet Transform has a firm mathematical support and also powerful than the empirically defined 

EMD. Correlate with the conventional time-frequency analysis methods, the Empirical Wavelet Transform is 

ready to produce higher time-frequency resolution, which promotes seismic data processing and interpretation. 

 

II. Related Work 
In 2014Ping Wang; Jinghuai Gao; Zhiguo Wang proposed,“Time-frequency analysis of ECG data 

using synchrosqueezing transform”. The synchrosqueezing transform is a promising tool which can provide a 

detailed time-frequency representation for ECG signal processing applications. In 2013Jerome Gilles reported 

empirical mode decomposition (EMD), to decompose a signal accordingly to its contained information. Even 

though its adaptability seems useful for many applications, the main issue with this approach is its lack of 

theory. The main idea is to extract the different modes of a signal by designing an appropriate wavelet filter 

bank. This construction leads us to a new wavelet transform, called the empirical wavelet transform. In 1997 

Amir-Homayoon Najmi and John Sadowsky proposed, “The Continuous Wavelet Transform and Variable 

Resolution Time–Frequency Analysis”. Wavelet transforms have recently emerged as a mathematical tool for 

multiresolution decomposition of signals. In 1996R. G. Stockwell; L. Mansinha; R. P. Lowe anticipated, “ 

Localization of the complex spectrum: The s transform”. The S transform, which is introduced in the present 

correspondence, is an extension of the ideas of the continuous wavelet transform (CWT) and is based on a 

moving and scalable localizing Gaussian window.  

 

III. Model And Problem Definition 
3.1 Empirical Wavelet Transform 
The objective of EWT is to extract different modes by building adaptive wavelets. This approach is performed 

in the following steps. 

Step 1) Apply the FFT to the signal f(t), where f(t) is a discrete signal, t = {ti}i=1,2,...,M, and M denotes the 

number of samples, to obtain the frequency spectrum X(w), and find the set of maxima M = {Mi}i=1,2,...,N in 

the Fourier spectrum and deduce their corresponding frequencies w = {wi}i=1,2,...,N . Here, N denotes the 

number of maxima, and also, the number of filter banks is introduced hereinafter. 

Step 2) Obtain proper segmentation of the Fourier spectrum and the set of boundaries. Now, define the 

boundaries Ωi of each segment as the center of two consecutive maxima 

 
where wi and wi+1 are two frequencies and the set of boundaries isΩ = {Ωi}i=1,2,...,N−1. 

Step 3) Define a bank of N wavelet filters composed of one low-pass filter andN − 1 band pass filters based on 

the boundaries. The expressions for the Fourier transform of scaling function φ1(w) and the empirical wavelets 

ψi(w) are given by 

 
where α(γ,Ωi) = β((1/2γΩi)(|ω| − (1 − γ)Ωi)), γ is a parameter that ensures no overlap between the two 

consecutive transitions, and β(x) is an arbitrary function defined as 

 
 

 



Bio Signal (EEG) Using Empirical Wavelet Transform In Time Frequency Analysis 

International Conference on Electrical, Information and Communication Technologies                          25 | Page 

(ICEICT -2017) 

 
 

 

Step 4) Perform scaling and wavelet functions to extract the components of different modes. Therefore, the 

approximate coefficients can be expressed by the inner product of analyzed signal f with empirical scaling 

function 

 
Similarly, the detailed coefficients are obtained by the inner product of analyzed signal f with empirical 

wavelets 

 
Here,Wf (i, t) denotes the detailed coefficients for the ith filter bank at the tth time point. 

 

3.2 Wavelet bank of filter tree based analysis 
As the computation of wavelet involves filtering, an efficient filtering process is essential in wavelet 

hardware implementation. Hence, the overall performance depends significantly on the precision of the 

intermediate wavelet coefficients as discussed in detail in next chapter. An alternative method for fast and 

efficient implementation of wavelet transform is based on parallel filter implementation.  

In this, cascaded high-pass and low-pass filters at different resolution levels will be replaced by their 

equivalent filter. This necessitates number of filters to be of the order of decomposition level. The main 

advantage of the parallel filter algorithm is that it does not require storing intermediate coefficients. Another 

advantage of this architecture is that the word length can be arbitrary and is not restricted to be a multiple of two 

meters for m-resolution-level wavelet decomposition.  

 

3.3 BIO MEDICAL SIGNAL ANALYSIS OF EEG 

The EEG potentials were recorded at 10–20 EEG electrode positions over the scalp, with a cap and 

integrated electrodes. These electrodes measure the weak (5-100μV) electrical potentials generated by brain 

activity. Each electrode typically consists of a wire leading to a disk that is attached to the scalp using 

conductive paste or gel. The data acquisition was performed using Micromed Digital Acquisition System at a 

256 sample per second sampling frequency. This system contains an amplifier, and an ADC. 
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Signal preprocessing is necessary to maximize the signalto-noise ratio (SNR) since there are many 

noise sources encountered with the EEG signal. Noise sources can be nonneural (eye movements, muscular 

activity, 50Hz power-line noise) or neural (EEG features other than those used for control. Notch filters with a 

null frequency of 50 Hz are used to ensure perfect rejection of the strong power supply. High pass filter with a 

cut-off frequency of than 0.3 Hz is used to remove the disturbing very low frequency components such as those 

of breathing. On the other hand, high-frequency noise is mitigated by using low pass filters with a cut-off 

frequency of 40 Hz. For eye-movement artifacts and muscular artifacts, it was tried to reject a trial containing 

any of these artifacts. Further preprocessing was not performed because the purpose is to be as close as possible 

from a BCI for real-time applications and preprocessing would slowdown the process of data analysis. 

Moreover, data recorded outside the laboratory are likely to be noisier than those recorded inside. So it is 

assumed that processing noisier data would have better generalization properties. 

 

3.4 Analysis And Signal Feature Extraction 

Wavelet transform forms a general mathematical tool for signal processing with many applications in EEG data 

analysis Its basic use includes time-scale signal analysis, signal decomposition and signal compression. 

 
 

Both continuous or discrete signals can be then approximated in the way similar to Fourier series and 

discrete Fourier transform. The initial wavelet can be considered as a pass-band filter and in most cases half-

band filter covering the normalized frequency band _0.25, 0.5). A wavelet dilation by the factor a = 2m 

corresponds to a pass-band compression. 

The set of wavelets define a special filter bank which can be used for signal component analysis and 

resulting wavelet transform coefficients can be further applied as signal features for its classification. Signal 

decomposition performed by a pyramidal algorithm is interpreting wavelets as pass-band filters. Another 

approach is based upon a very efficient parallel algorithm using the fast Fourier transform. 
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The scalogram and spectrogram of the selected part of the EEG signal comparing results achieved by 

the DWT and DFT. It is obvious that owing to the principle of the wavelet transform short time signal 

components can be better detected and more precisely localized by the DWT comparing to results obtained by 

the DFT. 
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IV. Simulation Result 

  

 

 
 

 
Figure  (1) Simulation of  EEG signal  (2) Simulation of Scale Space (3) Simulation of  Time Frequency 

Analysis of EWT (4)value of PSN for EWT 
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V. Conclusion 
In this letter, we have proposed a novel EEG time– frequency analysis approach using the EWT. The 

EWT approach first estimates the frequency components and then adapts the scaling function and wavelets 

based on the detected boundaries to decompose the signal. No prior information regarding the signal is required 

in this decomposition process, and thus, EWT can be a fully adaptive approach for conveniently analyzing the 

time–frequency information of EEG data. The EWT-based instantaneous frequency spectra can produce much 

sparser representation and much higher time–frequency resolution than the traditional CWT approach.  

 

References 
[1]. J. B. Allen, “Short term spectral analysis, synthetic and modification by discrete Fourier transform,” IEEE Trans. Acoust. Speech 

Signal Process., vol. 25, no. 3, pp. 235–238, Jun. 1977. 
[2]. S. G. Mallat, A wavelet Tour of Signal Processing: The Sparse Way. Orlando, FL, USA: Academic, 2009. 

[3]. A. Chakraborty and D. Okaya, “Frequency-time decomposition of ECG data using wavelet-based methods,” Geophysics, vol. 60, 

no. 6, pp. 1906–1916, Nov./Dec. 1995. 
[4]. R. G. Stockwell, L. Mansinha, and R. P. Lowe, “Localization of the complex spectrum: The s transform,” IEEE Trans. Signal 

Process., vol. 44, no. 4, pp. 998–1001, Apr. 1996. 

[5]. S. Najmi and J. Sadowsky, “The continuous wavelet transform and variable resolution time-frequency analysis,” Johns Hopkins 

APL Tech. Dig., vol. 18, no. 1, pp. 134–140, 1997. 

[6]. S. Sinha, P. S. Routh, P. Anno, and J. P. Castagna, “Spectral decomposition of ECG data with continuous wavelet transform,” 

Geophysics, vol. 70, no. 6, pp. 19–25, Nov. 2005. 
[7]. S. Sinha, P. S. Routh, P. D. Anno, and J. P. Castagna, “Scale attributes from continuous wavelet transform,” in Proc. 75th Annu. Int. 

Meet. SEG Expanded Abstracts, 2005, pp. 779–781. 

[8]. C. Jeffrey and J. William, “On the existence of discrete Wigner distributions,” IEEE Signal Process. Lett., vol. 6, no. 12, pp. 304–
306, Dec. 1999. 

[9]. X. Wu and T. Liu, “ECG spectral decomposition and analysis based on Wigner-Ville distribution for sandstone reservoir 

characterization in West Sichuan depression,” J. Geophys. Eng., vol. 7, no. 2, pp. 126–134, Mar. 2010. 
[10]. S. G. Mallat and Z. F. Zhang, “Matching pursuit with time-frequency dictionaries,” IEEE Trans. Signal Process., vol. 41, no. 12, pp. 

3397–3415,Dec. 1993. 

[11]. Y. Wang, “ECG time-frequency spectral decomposition by matching pursuit,” Geophysics, vol. 72, no. 1, pp. V13–V20, Jan. 2007. 
[12]. X. Zhang, L. Han, Y. Wang, and G. Shan, “ECG spectral decomposition fast matching pursuit algorithm and its application,” 

Geophys. Prospecting Petroleum, vol. 49, pp. 1–6, 2010. 

[13]. J. Han and M. van der Baan, “Empirical mode decomposition for ECG time-frequency analysis,” Geophysics, vol. 78, no. 2, pp. 
O9–O19, Mar./Apr. 2013. 

[14]. Y. Chen, T. Liu, X. Chen, J. Li, and E. Wang, “Time-frequency analysis of ECG data using synchrosqueezing wavelet transform,” 

J. ECG Exploration, vol. 23, no. 5, pp. 303–312, Sep. 2014. 
[15]. P. Wang, J. Gao, and Z. Wang, “Time-frequency analysis of ECG data using synchrosqueezing transform,” IEEE Geosci. Remote 

Sens. Lett., vol. 11, no. 12, pp. 2042–2044, Dec. 2014. 
[16]. R. H. Herrera, J. Han, and M. van der Baan, “Applications of the synchrosqueezing transform in ECG time-frequency analysis,” 

Geophysics, vol. 79, no. 3, pp. V55–V64, May 2014. 

[17]. Y. Chen, S. X. Li, G. Zhang, and S. Gan, “Delineating karstification using synchrosqueezeing wavelet transform,” in Proc. 73rd 
Annu. Int. Meet. SEG Expanded Abstracts, Oct. 2015, pp. 1835–1840. 

[18]. I. Daubechies, J. Lu, and H.-T. Wu, “Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool,” Appl. 

Comput. Harmonic Anal., vol. 30, no. 2, pp. 243–261, Mar. 2011. 
[19]. J. Gilles, “Empirical wavelet transform,” IEEE Trans. Signal Process., vol. 61, no. 16, pp. 3999–4010, Aug. 2013.  


